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SYNTHESIZING CONCURRENT INTERVAL PERFORMANCES

JAMES S. MACDONALL
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Concurrent schedules may be viewed as consisting of two pairs of stay and switch schedules, each
pair associated with one of the alternatives. A stay schedule arranges reinforcers for staying and
responding at one alternative, whereas the associated switch schedule arranges reinforcers for switch-
ing to the other alternative. In standard concurrent schedules, the stay schedule at each alternative
is equivalent to the switch schedule at the other alternative. MacDonall (1999) exposed rats to one
pair of stay and switch variable-ratio schedules and varied the response requirements across condi-
tions. Combining results from symmetric pairs produced composite performances that were de-
scribed by the generalized matching law. This outcome was noteworthy because the data were ob-
tained from performances at two alternatives with contingencies that were functionally unrelated to
each other. This result suggests that concurrent performances may consist of two unrelated perfor-
mances that alternate as behavior moves between alternatives. The purpose of the present experi-
ment was to extend those results to interval schedules. Rats were exposed to pairs of random-interval
schedules, and across conditions their mean intervals were varied. When data from appropriately
paired conditions were combined, the composite performances were consistent with the generalized
matching law. In addition, the results supported two models of concurrent performances that were
based on local variables at an alternative (behavior, and stay and switch reinforcers): a modified
version of the contingency discrimination model (Davison & Jenkins, 1985) and the local model
(MacDonall, 1999).
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random-interval schedule, lever press, rats

Choice is frequently investigated using con-
current schedules of reinforcement in which
variable-interval (VI) schedules are associated
with the alternative responses. The first para-
metric investigation of performance on con-
current schedules found that the allocation
of behavior among the alternatives equaled
the allocation of reinforcers (Herrnstein,
1961). A general formulation of this relation,
which is the most common and robust de-
scription of concurrent performance, is
known as the generalized matching relation
(Baum, 1974),

B R1 1log 5 a log 1 log b. (1)1 2 1 2B R2 2

Bn is the number of responses or time at al-
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ternative n. Rn is the number of reinforcers
obtained at alternative n. The fitted parame-
ters are a, which is behavioral sensitivity to
differences in numbers of reinforcers ob-
tained at each alternative, and log b, which is
bias towards one alternative that is not related
to the allocation of reinforcers.

When contingencies on concurrent sched-
ules are viewed from a more local perspec-
tive, they can be decomposed into two pairs
of schedules, with each pair associated with
an alternative (Houston & McNamara, 1981;
MacDonall, 1998). Each pair consists of a stay
schedule, which arranges reinforcers for stay-
ing and responding at the present alternative,
and a switch schedule, which arranges rein-
forcers for switching to the other alternative.
For example, in a concurrent random-inter-
val (RI) 36-s RI 312-s schedule, the pair of
schedules at the first alternative are RI 36 s
and RI 312 s, both of which operate only
while the subject is at the first alternative. The
RI 36-s schedule arranges reinforcers for stay-
ing at the first alternative, and the RI 312-s
schedule arranges reinforcers for switching to
the second alternative. At the second alter-
native, the pair of schedules are RI 312 s and
RI 36 s, both of which operate only while the
subject is at the second alternative. The RI
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312-s schedule arranges reinforcers for stay-
ing at the second alternative, and the RI 36-
s schedule arranges reinforcers for switching
to the first alternative. As this example dem-
onstrates, in the standard concurrent proce-
dure the pairs of schedules are symmetric, that
is, the stay schedule of each pair is equivalent
to the switch schedule of the other pair. This
analysis suggests that concurrent schedules
may consist of two functionally unrelated but
symmetric sets of contingencies that produce
two functionally unrelated performances,
one at each alternative. Of course, these per-
formances are related to each other by
changeover responding, which switches these
otherwise unrelated contingencies and the
performances they maintain by stopping one
pair of schedules and restarting the other
pair.

Evidence supporting the view that the per-
formances and the contingencies at the alter-
natives are not functionally related to each
other was provided by exposing rats to just
one pair of stay and switch variable-ratio (VR)
schedules and systematically varying the re-
sponse requirements (MacDonall, 1999). Re-
sponses at one lever, the stay lever, earned
stay and switch reinforcers by incrementing
both ratio counters and obtained stay rein-
forcers when arranged by the stay schedule.
The first response at the other lever, the
switch lever, obtained switch reinforcers when
arranged by the switch schedule. The first
and subsequent responses at the switch lever
did not increment either counter and did not
change alternatives or stimuli. For example,
when the stay schedule was VR 20 and the
switch schedule was VR 80, responses at the
main (i.e., stay) lever incremented both ratio
counters. Responses at the main lever were
immediately reinforced according to the VR
20. When main-lever responses arranged a re-
inforcer according to the VR 80, that rein-
forcer was held until a response at the switch
lever delivered the held reinforcer. Responses
at the switch lever never incremented either
counter and did not change any stimuli.

There were two main findings. First, the
performances at each alternative, run lengths
and visit durations, were related to the num-
bers of reinforcers obtained from the stay and
switch schedules. Run length was the number
of responses at the main lever divided by the
number of switches. Visit duration was the

time at the main lever divided by the number
of switches. Second, when conditions were ar-
ranged into symmetric pairs that if combined
produce standard concurrent procedures,
the resulting composite concurrent perfor-
mances were described by the following vari-
ation of the generalized matching law:

B /C (Rt /C ) 1 (Rw /C )1 2 1 2 1 1log 5 a log1 2 [ ]B /C (Rt /C ) 1 (Rw /C )2 1 2 1 2 2

1 log b. (2)

This equation was modified for per-visit re-
sponding, time and reinforcer allocation, by
first dividing the numerator and denomina-
tor of each side of Equation 1 by the fre-
quency of switching out of that alternative.
Dividing by the frequencies of switching out
of the alternatives was effectively dividing by
a constant because the frequencies of switch-
ing at the two alternatives were large (greater
than 100) and must be within 1 of each other.
Thus, the values of the ratios were essentially
unchanged. Then, the reinforcers per visit
were separated into stay reinforcers per visit
and switch reinforcers per visit. Rtn represents
the number of reinforcers obtained for stay-
ing at alternative n, Rwn represents the num-
ber of reinforcers obtained for switching to
alternative n, Cn is the number of switches to
alternative n, and the other symbols are as in
the previous equation. Thus, in the numera-
tor, Rt1/C2 is the number of reinforcers ob-
tained for staying at Alternative 1 divided by
the number of switches to Alternative 2,
which ends a visit. Rw1/C1 is the number of
reinforcers obtained for switching to Alter-
native 1 divided by the number of switches to
Alternative 1. Similar substitutions apply to
the denominator. Equation 2, the per-visit
version of the generalized matching law, fit-
ted the per-visit data. Recall that unlike data
from standard concurrent procedures, the
number of stay reinforcers per visit and the
number of switch reinforcers per visit in the
numerator and denominator were obtained
during different sessions. These sessions did
not necessarily follow each other, yet the gen-
eralized matching law described the compos-
ite data. It is in this sense, then, that the data
analysis used by MacDonall (1999) is said to
synthesize performance on concurrent VR
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schedules that were programmed like con-
current VI schedules (MacDonall, 1988).

The preceding analysis supports the view
that concurrent performances are composed
of unrelated performances at the alternatives.
The composite performances were based on
performances maintained by VR schedules,
which are rarely used in investigations of con-
current performance. In a related experi-
ment, when the performances maintained by
functionally unrelated pairs of VI schedules
were combined, the composite concurrent
performances were described by the gener-
alized matching law, but with large biases
(MacDonall, 1998). These biases probably re-
sulted from the fact that the procedures were
only approximations of concurrent contin-
gencies. The switch schedules ran continu-
ously, rather than only when the stay schedule
operated, as is the case under standard con-
current VI schedules. Accordingly, one pur-
pose of the present experiment was to use
stay and switch interval schedules arranged
according to concurrent interval contingen-
cies and to fit the generalized matching law
to the composite concurrent performances.

Although the generalized matching law de-
scribes the composite concurrent perfor-
mances that were maintained by functionally
unrelated pairs of stay and switch schedules,
it is not clear that the generalized matching
law can describe the orderly performances at
the alternatives, for example, the run lengths
and visit durations. Ideally, one model can de-
scribe both the orderly performances at the
alternatives and the concurrent performanc-
es. Therefore, the present research focused
on two additional models: the local model
(MacDonall, 1999), which is based on contin-
gencies at the alternative, and a model relat-
ed to the contingency discrimination model
of Davison and Jenkins (1985).

The Local Model

The local model, as applied to the perfor-
mances at the alternatives, will be described
first, followed by its extension to concurrent
performance. According to the local model,
the performances at each alternative, namely
run lengths and visit durations, are power
functions of the ratio of the likelihoods of re-
inforcement for staying at that alternative di-
vided by the likelihood of reinforcement for
switching to the other alternative (Mac-

Donall, 1999). Stay reinforcers are earned
and obtained by behavior at the same alter-
native. Switch reinforcers are earned by be-
havior at one alternative and obtained by be-
havior at the other alternative (Green,
Rachlin, & Hanson, 1983). For the local mod-
el, the behavior that earns the reinforcer is
just as important as the behavior that obtains
the reinforcer. This differs from the general-
ized matching law, which focuses exclusively
on obtained reinforcers regardless of the be-
havior that earned them. The likelihood of
reinforcement is, when using interval sched-
ules, the rate of earning stay or switch rein-
forcers. The likelihood of reinforcement for
staying at Alternative 1 is the number of re-
inforcers obtained for staying and responding
at Alternative 1 divided by the time at Alter-
native 1, which earned those stay reinforcers.
The likelihood of reinforcement for switch-
ing to Alternative 2 is the number of rein-
forcers obtained for switching to Alternative
2 divided by the time at Alternative 1, which
earned those switch reinforcers. At Alterna-
tive 1, this is expressed as

B Lt1 1log 5 k log 1 log m . (3)1 11 2 1 2C Lw2 2

Lt1 is the likelihood of reinforcement for stay-
ing and responding at Alternative 1. Lw2 is
the likelihood of reinforcement for switching
to Alternative 2. There are two reasons why
likelihood of reinforcement is used instead of
probability of reinforcement, which was used
previously (MacDonall, 1999). First, probabil-
ity is inappropriate given the time-based
schedules used in the present experiment.
Second, likelihood is a more general term
that can be understood as either probability
or rate, depending on whether ratio or inter-
val schedules are used. The fitted parameters
are k1, which is behavioral sensitivity to dif-
ferences in the likelihoods of stay and switch
reinforcement, and log m1, which is the ten-
dency to stay at the present alternative
(MacDonall, 1999). The other symbols are as
in previous equations. This equation says that
the logs of the run lengths and visit durations
are proportional to the logs of the ratios of
the likelihoods of earning stay and switch re-
inforcement.

A model of concurrent performance can
be derived from the local model, Equation 3
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(see the Appendix for the derivation). This
model also fitted the composite concurrent
VR performances obtained by MacDonall
(1999). The model is

 B11 2C 2 Lt ·Lw1 1 log 5 k9 log 1 log m9. (4)1 2Lt ·Lw2 2B2 1 2C1 

The fitted parameters are log m9, which is the
bias towards one alternative and k9, which is
the behavioral sensitivity to differences in
likelihood of earning stay and switch rein-
forcers. The other symbols are as in previous
equations. Equation 4 says that the log of the
ratio of the run lengths or visit durations is
proportional to the log of the ratio of the
products of the likelihoods of reinforcement
at each alternative.

The Local Contingency Discrimination
Model

After reviewing the contingency discrimi-
nation model (Davison & Jenkins, 1985), and
showing how that model cannot apply to com-
posite concurrent performances, a related
model will be developed starting with perfor-
mances at the alternatives and then extending
it to composite concurrent performances.

The contingency discrimination model
posits that behavior is perfectly sensitive to
perceived reinforcer contingencies. However,
occasionally reinforcer contingencies are mis-
perceived, which produces undermatching
(Davison & Jenkins, 1985; Davison & Jones,
1995). Contingencies are misperceived when
reinforcers from Alternative 1 are misper-
ceived as Alternative 2 reinforcers and when
Alternative 2 reinforcers are misperceived as
Alternative 1 reinforcers. The contingency
discrimination model may be expressed as

B R 2 pR 1 pR1 1 1 25 n . (5)1 2B R 2 pR 1 pR2 2 2 1

One fitted parameter p, which is the difficulty
of correctly perceiving reinforcer contingen-
cies, varies between 0 and .5. At 0, the rein-
forcer contingencies are perfectly discrimi-
nated, and at .5, reinforcer contingencies are
completely confused, that is, random. The pa-
rameter n is bias towards either alternative

that is not related to reinforcer allocation.
The other symbols are as in previous equa-
tions.

The contingency discrimination model,
Equation 5, cannot be applied to composite
concurrent performances maintained by
functionally unrelated pairs of stay and switch
schedules, such as those used previously
(MacDonall, 1998, 1999) and in the following
experiment. When performances from func-
tionally unrelated pairs of schedules are com-
bined, the contingency misperception must
be among contingencies that could, in fact,
be misperceived. It is reasonable to model
misperceptions between stay and switch re-
inforcers in the same session. It is not reason-
able, however, to model misperceptions be-
tween stay and switch reinforcers delivered in
different sessions, possibly widely separated in
time. Said differently, because the composite
performances were produced by two pairs of
schedules that do not alternate within the
same session, a contingency discrimination
analysis must not require reinforcers allocat-
ed by one pair of schedules in one session to
be confused with reinforcers allocated by the
other pair of schedules in different sessions.
Yet the contingency discrimination model,
Equation 5, requires misperception among
reinforcers from different pairs of schedules.
This problem is eliminated when stay rein-
forcers at each alternative are misperceived
only with switch reinforcers arranged by the
paired switch schedule. Similarly, switch re-
inforcers at each alternative are misperceived
only with stay reinforcers arranged by the
paired stay schedule. A model of perfor-
mance at each alternative emerges from the
notion that the stay and switch reinforcers are
important but that reinforcer allocation with-
in a pair of schedules can be misperceived.
This produces

B (Rt /C 2 p Rt /C 1 p Rw /C )1 1 2 1 1 2 1 2 25 n ,1C (Rw /C 2 p Rw /C 1 p Rt /C )2 2 2 1 2 2 1 1 2

(6)

where the symbols are as in previous equa-
tions. This equation says that run lengths and
visit durations are proportional to the ratio of
the perceived number of reinforcers for stay-
ing and responding at Alternative 1 divided
by the perceived number of reinforcers for
switching to Alternative 2. The number of
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perceived stay reinforcers are the actual num-
ber of stay reinforcers less a proportion, p, of
the stay reinforcers that are perceived as
switch reinforcers, plus the same proportion,
p, of the switch reinforcers that are perceived
as stay reinforcers. Similarly, the number of
perceived switch reinforcers are the actual
number of switch reinforcers less a propor-
tion, p, of the switch reinforcers that are per-
ceived as stay reinforcers, plus the same pro-
portion, p, of the stay reinforcers that are
perceived as switch reinforcers.

A model of concurrent performance
emerges by taking the ratio of Equation 6 as
applied to each alternative, letting n9 5 n1/
n2, assuming p1 5 p2, and substituting p9. This
produces

B /C1 2

B /C2 1

(Rt /C 2 p9Rt /C 1 p9Rw /C )1 2 1 2 2 25 n91(Rw /C 2 p9Rw /C 1 p9Rt /C )2 2 2 2 1 2

(Rw /C 2 p9Rw /C 1 p9Rt /C )1 1 1 1 2 13 ,2(Rt /C 2 p9Rt /C 1 p9Rw /C )2 1 2 1 1 1

(7)

where the symbols are as in previous equa-
tions. Essentially, this model says that the ra-
tio of run lengths and visit durations is a func-
tion of the ratio of the per-visit perceived
number of stay reinforcers multiplied by the
per-visit perceived number of switch reinforc-
ers at each alternative.

The purpose of the present experiment
was to determine whether composite concur-
rent interval performances maintained by
functionally unrelated pairs of stay and switch
schedules would be described by the gener-
alized matching relation (Equation 2), the lo-
cal model (Equation 4), and the local contin-
gency discrimination model (Equation 7).
Because VI schedules with a fixed set of in-
terreinforcement intervals produce only an
approximation to a random distribution of
reinforcers, RI schedules were used. The de-
sign was similar to that used previously
(MacDonall, 1999). Rats were exposed to
pairs of stay and switch RI schedules. The val-
ues of the RI schedules were varied across
conditions. At the end of the experiment,
performances from each condition were ar-
ranged with its symmetric condition produc-

ing composite concurrent performances,
which in turn were analyzed according to the
three models.

METHOD

Subjects

The subjects were 4 female albino Sprague-
Dawley rats obtained from Hilltop Lab Ani-
mals Inc. and maintained at 85% of their
free-feeding weights. They were approximate-
ly 100 days old when the experiment began
and were housed individually in a tempera-
ture-controlled colony room on a 14:10 hr
light/dark cycle with free access to water.

Apparatus

Four operant conditioning chambers were
used. Each was 20 cm wide and 20 cm high;
three were 20 cm long, and one was 30 cm
long. The food cup was centered horizontally
on one wall (20 cm wide), and the center of
the opening (5 cm square) was 3.5 cm above
the floor. The centers of two response levers,
5 cm wide, 1 cm thick, and protruding 1.5
cm into the chamber (Gerbrands Model
G6312), were located 5.5 cm from either side
of the vertical center line of the food cup and
6.5 cm above the floor. A minimum force of
approximately 0.3 N operated each lever. A
Gerbrands feeder, located behind the food
cup, dispensed 45-mg Noyes Formula A/1 ro-
dent pellets. Each chamber was located in a
sound- and light-controlled enclosure. A
houselight mounted on the ceiling of the en-
closure operated continuously during ses-
sions. A speaker mounted on the ceiling of
the chamber presented white noise during
sessions. Located in an adjacent room was an
IBM-compatible computer with hardware
(MED Associates) and software (MED-PCt)
that controlled contingencies and recorded
responses.

Procedure

Rats were exposed to a pair of RI sched-
ules. The first press on the left lever, the stay
lever, started stay and switch RI schedules.
Presses on the stay lever were occasionally re-
inforced according to the stay schedule.
Presses on the right lever, the switch lever,
stopped both RI schedules and were occa-
sionally reinforced according to the switch
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Table 1

For each rat, the sequence of conditions, the probability the random generator produced an
output for stay and switch reinforcement, number of sessions, sums over the last 5 days of the
number of stay responses, times in stay before a switch response, times in switch before a stay
response, numbers of stay and switch reinforcers, and the number of switches. In all conditions
the probability generator was sampled every 0.5 s.

Rat Order

Probability (31024)
a reinforcer was

arranged for

Staying Switching Sessions
Stay

responses

Time (s) switched

In Out

Reinforcers for

Staying
Switch-

ing Switches

441 1
2
3
4
5

16
78

140
134
94

140
78
16
22
62

17
26
20
13
10

5,356
16,251
7,788
7,763
8,372

14,107.3
18,335.3
15,867.2
19,921.9
15,215.4

22,843.9
12,839.7
3,281.2
4,362.3
6,599.9

47
270
444
420
305

233
229
57
81

197

2,913
2,530

634
828

1,653

442

6
7
8
1
2

78
62
22

140
125

78
94

134
16
31

11
12
12
22
15

8,299
7,711
8,899
7,134
5,815

15,967.0
16,265.3
14,092.2
16,571.4
17,966.5

10,679.7
17,231.3
21,796.9
5,397.6
6,847.5

257
180
57

441
392

243
272
337
60

110

2,246
2,362
3,784

774
1,327

3
4
5
6
7
8

78
31
16
62
39
78

78
125
140
94

117
78

13
11
10
16
12
16

2,962
6,586
5,650
5,806
4,279
4,341

17,043.2
16,102.2
9,003.2

17,737.5
14,379.1
17,811.4

6,674.5
19.765.0
26,901.8
17,775.4
21,414.8
12,276.8

256
81
23

184
100
246

245
351
209
282
287
254

1,634
3,353
2,598
3,258
2,833
2,981

443

9
10
1
2
3
4

94
117
39
94

117
78

62
39

117
62
39
78

12
12
32
13
22
23

4,000
3,494

21,614
20,164
20,657
22,233

18,135.1
17,807.2
17,982.0
17,760.5
16,505.6
17,117.9

10,728.5
7,910.8

12,579.0
7,985.1
3,683.9
6,131.4

300
351
130
313
365
254

200
150
358
188
135
247

2,666
2,117
5,250
4,301
2,157
2,681

444

5
6
7
8
1
2
3

31
62

125
78
78
62
94

125
94
31
78
78
94
62

10
15
19
10
36
17
22

24,902
27,118
23,531
21,886
16,022
14,890
15,890

16,963.1
17,834.3
16,800.0
16,296.2
16,937.7
16,538.8
16,212.5

10,161.0
8,430.8
3,399.7
5,849.9
5,119.2
6,683.9
4,255.0

103
201
395
257
261
220
275

397
300
106
244
239
280
225

5,085
4,602
2,241
2,926
1,343
1,754
1,996

4
5
6
7
8

125
26
78

130
31

31
130
78
26

125

26
11
20
13
11

15,366
14,583
14,073
15,110
14,674

15,438.0
17,586.4
17,485.8
15,571.6
16,190.7

2,253.3
11,116.2
5,141.2
1,523.2
8,195.6

389
106
259
429
104

112
394
241
76

398

1,303
3,643
2,333

927
2,440

schedule. The next press on the stay lever re-
started both schedules and collected a rein-
forcer, if arranged by the stay schedule. This
happened when the stay schedule arranged a
reinforcer after the last press on the stay lever
and before the switch lever was pressed.
When an RI schedule arranged a reinforcer,
that RI schedule stopped until a press of the
appropriate lever delivered that reinforcer.
The other RI schedule continued operating.
Because a changeover delay would alter the
stay and switch contingencies, a changeover
delay was not used.

Both RI schedules sampled a probability
generator every 0.5 s. After an output from
the generator occurred, the next press on the
appropriate lever was reinforced. Across con-
ditions the probability of an output varied,
with the sum of the stay and switch probabil-
ities constant. This kept the overall scheduled
likelihood of reinforcement, the sum of the
stay and switch likelihoods, approximately
constant at .0156 every 0.5 s, which produced
an overall RI of 32 s. Schedules ranged from
RI 35.7 s to RI 312.5 s.

Table 1 lists, for each rat, the arrangement
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of schedules in each condition, the sequence
of conditions, and the number of sessions
that each condition was in effect. Rats were
exposed to 8 or 10 conditions. A condition
remained in effect for at least 10 sessions and
until visual inspection showed that there were
no apparent upward or downward trends in
run lengths and visit durations for five con-
secutive sessions. Sessions were typically con-
ducted 6 days per week and ended after the
first changeover response following the 100th
reinforcer.

Initial training. First, each rat was trained to
approach the food cup at the sound of the
food dispenser operating. Then, pressing the
stay lever was shaped by the method of suc-
cessive approximations. After approximately
40 reinforced presses on the stay lever, rats
were exposed to Condition 1. Pressing the
switch lever was not shaped. This response
emerged when reinforcement for stay-lever
responses declined with the introduction of
the schedules in the first condition.

RESULTS

All analyses were based on the sums of the
data from the last 5 days of each condition.
Table 1 presents these sums for numbers of
responses at the stay lever, durations of visits
at the stay lever, times between visits at the
stay lever, numbers of stay and switch rein-
forcers, and numbers of switches. The dura-
tion of visits at the stay lever, called ‘‘switched
in’’ time in Table 1, was the cumulative du-
ration from the first press of the stay lever,
which started a visit, to the first press of the
switch lever, which ended a visit. The dura-
tion between visits at the stay lever, called
‘‘switched out’’ time in Table 1, was the cu-
mulative duration from the first press of the
switch lever to the first press of the stay lever.

The first analyses assess how well the gen-
eralized matching law describes the compos-
ite concurrent performances. Conditions
were grouped into symmetric pairs that, when
combined, form standard concurrent proce-
dures. For example, the pair of schedules RI
x s for staying and RI y s for switching and
the pair of schedules RI y s for staying and RI
x s for switching are symmetric pairs of sched-
ules, and when combined form concurrent
RI x-s RI y-s schedules. The data from these
paired conditions were combined according

to Equation 2. For each pair of conditions,
the data from the condition that the rat was
first exposed to was considered to be data
from Alternative 1 in Equation 2. Similarly,
the data from the second of the paired con-
ditions was considered to be data from Alter-
native 2. Then per-visit run lengths, visit du-
rations, and stay and switch reinforcers were
obtained. Run length was the total number
of stay responses divided by the number of
switches. Visit duration was the total time be-
tween the first stay response and the next
switch response (switched in time) divided by
the number of switches. Per-visit data, rather
than the sums, were used because each con-
dition produced different numbers of switch-
es.

Figures 1 and 2 show, for each rat, that the
log of the ratio of run lengths and the log of
the ratio of visit durations increased approx-
imately linearly with the log of the composite
reinforcer ratio. The composite reinforcer ra-
tio was the sum of the per-visit stay and switch
reinforcers at one alternative divided by the
sum of the per-visit stay and switch reinforcers
at the other alternative. The sum of the per-
visit stay and switch reinforcers at an alter-
native was calculated according to the nu-
merator and denominator of Equation 2. The
solid lines represent the best fit of Equation
2 to these data using the least squares meth-
od. Table 2 presents these fits, which, with the
exception of run lengths for Rat 443, are
good to excellent (r 2 . .81). There is no con-
sistent bias. The slopes of run length and visit
duration for Rat 441 reflect slight under-
matching (a , 1.0), whereas the slopes for
the other six functions show large under-
matching.

The next analyses focus on how well the
local model and the local contingency dis-
crimination model described the run lengths
and visit durations. Figure 3 shows for each
rat, on log-log coordinates, that mean run
lengths and mean visit durations increased as
a function of the ratio of the likelihoods of
reinforcement for staying and switching. The
likelihood of stay reinforcement was the num-
ber of stay reinforcers divided by the sum of
the durations of visits at the stay lever that
earned those reinforcers. Likelihood of re-
inforcement for switching was the number of
reinforcers for switching divided by the sum
of the durations of visits at the stay lever that



196 JAMES S. MACDONALL

Fig. 1. The log of the composite response ratios as a function of the log of the composite reinforcer ratios. The
solid lines represent the best fitting line according to the generalized matching law (Equation 2), and the dashed
lines represent the best fitting line according to the local contingency discrimination model (Equation 7).

earned those reinforcers. Two conditions had
identical programmed contingencies in
which the probability generator was set to
.0078 for arranging both stay and switch re-
inforcers. Including both these data points in
the regression necessarily decreases the r2 of
the fitted function unless, of course, the data
points are identical. Consequently, Equation
3 was fitted to the data using the mean of
these two points. The increasing function is
approximately linear for both run lengths
and visit durations for all rats, with the excep-
tion of run lengths for Rat 442.

Table 3 presents the results of least squares

fits of run lengths and visit durations by Equa-
tion 3, a power function, which, with the ex-
ception of run lengths for Rat 442, are fair to
excellent (r 2 . .60). The low slope in several
conditions makes r 2 a poor estimate of the
quality of the fit. However, the standard er-
rors of estimate of the slope and y intercept
are moderate, indicating that the fits are
good, despite the occasional small r 2. For
each rat, the slopes (k1) for run lengths and
visit durations are approximately equal. For 3
rats, the y intercepts (log m1) are larger for
visit duration than for run length, reflecting
the generally longer visit durations compared
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Fig. 2. The log of the composite visit duration ratios as a function of the log of the composite reinforcer ratios.
The solid lines represent the best fitting line according to the generalized matching law (Equation 2), and the dashed
lines represent the best fitting line according to the local contingency discrimination model (Equation 7).

to run lengths. The opposite was the case for
Rat 443.

Figure 4 shows the same data as in Figure
3 but because Equation 6 is expressed line-
arly, the data are plotted on linear coordi-
nates. The lines are the best fits, by the meth-
od of least squares, of the local contingency
discrimination model. Table 4 presents the
fits to these data for each rat. Equation 6 was
fitted to the data using the user-defined equa-
tion in SigmaPlot’sy regression routine. The
fits for run lengths and visit durations are fair
to excellent (r 2 . .69). The standard errors

of estimate were moderate to small. Inspec-
tion of Figures 3 and 4 and Tables 3 and 4
reveals that neither the local model (Equa-
tion 3) nor the local contingency discrimi-
nation model (Equation 6) is consistently bet-
ter at fitting the data. The local contingency
discrimination model provides a better fit to
the most discrepant data, the run-length data
of Rat 442.

The next analyses assess the fits of the local
model and the local contingency discrimina-
tion model to the composite concurrent per-
formances. Figure 5 shows that the log of the
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Table 2

Fits by Equation 2, the per-visit version of the generalized
matching law, to the log ratio of run lengths and of visit
durations as a function of the log composite reinforcer
ratios.

Rat a SE log b SE df r2

Run lengths
441
442
443
444

0.91
0.49
0.45
0.74

0.14
0.06
0.21
0.25

0.04
0.13

20.10
0.05

0.08
0.03
0.08
0.12

2
3
2
2

.96

.96

.69

.81
Visit durations

441
442
443
444

0.94
0.75
0.60
0.64

0.09
0.09
0.14
0.22

0.04
0.10

20.03
0.04

0.05
0.05
0.05
0.10

2
3
2
2

.98

.96

.90

.82

Table 3

Fits by Equation 3, the local model, to log run lengths
and to log visit durations as a function of the log ratio of
obtained likelihoods of reinforcement (stay/switch).

Rat k1 SE log m1 SE df r2

Run lengths
441
442
443
444

0.46
0.28
0.29
0.37

0.03
0.14
0.10
0.06

1.35
1.07
1.51
1.61

0.02
0.08
0.04
0.03

5
7
5
5

.98

.37

.61

.90
Visit durations

441
442
443
444

0.40
0.40
0.31
0.32

0.11
0.05
0.08
0.05

1.69
1.58
1.38
1.65

0.06
0.03
0.03
0.03

5
7
5
5

.75

.90

.77

.87

Fig. 3. On log-log coordinates, run lengths (inverted triangles and solid lines) and visit durations (circles and
dashed lines) as a function of the obtained likelihood of reinforcement for staying divided by the obtained likelihood
of reinforcement for switching. The lines represent the best fitting lines according to the local model (Equation 3).
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Fig. 4. On linear coordinates, run lengths (inverted triangles and solid lines) and visit durations (circles and
dashed lines) as a function of the obtained likelihood of reinforcement for staying divided by the obtained likelihood
of reinforcement for switching. The lines represent the best fitting lines according to the local contingency discrim-
ination model (Equation 6).

Table 4

Fits by the local contingency discrimination model, Equa-
tion 6, to run lengths and to visit durations as a function
of the ratio of the obtained likelihoods of reinforcement
(stay/switch).

Rat p1 SE n1 SE df r2

Run lengths
441
442
443
444

0.20
0.00
0.29
0.32

0.02
0.05
0.03
0.06

4.30
1.25
8.25
6.45

0.29
0.40
0.54
0.65

5
7
5
5

.98

.86

.92

.69
Visit durations

441
442
443
444

0.16
0.18
0.31
0.31

0.03
0.04
0.05
0.03

8.16
6.69
4.85
8.96

0.87
0.80
0.41
0.64

5
7
5
5

.97

.91

.78

.87

ratio of run lengths and the log of the ratio
of visit durations increased approximately lin-
early with the log of the ratio of the products
of the likelihoods of reinforcement at each
alternative. Table 5 presents the results of
least squares fits by Equation 4 to these data,
which are generally good to excellent (r 2 .
.82), with the exception of the run-length
data of Rat 443. The standard errors were
moderate to small. There was a slight bias, log
m9 . 0, for 3 rats. Within rats, there was no
consistent difference in slopes, k9, for run
lengths and visit durations. Table 5 also shows
the slopes, a from fits by the generalized
matching law (Table 2) and k1 from the local
model (Table 3). In all eight comparisons, a
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Fig. 5. The log of the ratio of run lengths (inverted triangles and solid lines) and of visit durations (circles and
dashed lines) as a function of the log of the ratio of the products of the likelihoods of reinforcement for staying at
and switching to Alternative 1 divided by the products of the likelihoods of reinforcement for staying at and switching
to Alternative 2. The lines represent the best fitting power functions (Equation 4).

is approximately twice k9, and k9 approxi-
mately equals k1.

The local contingency discrimination mod-
el, Equation 6, produced a model of concur-
rent performance, Equation 7. The dashed
lines in Figures 1 and 2 show fits of Equation
7 to these data. Equation 7 was fitted to these
data by the least squares method using the
user-defined equation in SigmaPlot’sy re-
gression routine. Table 6 shows these fits,
which are all excellent (r 2 . .89).

Baum, Schwendiman, and Bell (1999)
showed that when plots of run lengths as a

function of preference are analyzed separate-
ly for the richer and leaner alternatives, the
slopes for the two functions are quite differ-
ent. At the richer alternative (the alternative
with the higher rate of reinforcement), the
slope is positive and greater than zero, where-
as at the leaner alternative, the slope is ap-
proximately zero. Figure 6 shows that in the
present experiment, the log of the run
lengths increased at the richer alternative
and decreased or remained constant at the
leaner alternative as preference for the richer
alternative increased. Because it was not clear
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Table 5

Fits by Equation 4, the local model applied to concurrent
performance, to the log ratio of run lengths and of visit
durations as a function of the log of the ratio of products
of obtained reinforcer likelihoods. To facilitate compar-
isons, a from Table 2 and k1 from Table 3 are reproduced
below.

Rat k9 SE log m9 SE df r2 a k1

Run lengths
441
442
443
444

0.47
0.24
0.22
0.36

0.08
0.03
0.11
0.12

0.01
0.13

20.10
0.05

0.09
0.03
0.08
0.11

2
3
2
2

.94

.96

.69

.82

0.91
0.49
0.45
0.74

0.46
0.28
0.29
0.37

Visit durations
441
442
443
444

0.49
0.36
0.30
0.31

0.04
0.04
0.07
0.10

0.02
0.10

20.03
0.05

0.04
0.05
0.05
0.10

2
3
2
2

.99

.96

.90

.83

0.99
0.74
0.60
0.64

0.40
0.40
0.31
0.32

Table 6

Fits by the local contingency discrimination model as ap-
plied to concurrent performances, Equation 7, to the
per-visit data.

Rat p9 SE n9 SE df r2

Run lengths
441
442
443
444

0.31
0.27
0.28
0.22

0.04
0.04
0.06
0.06

1.35
0.91
0.94
0.96

0.29
0.25
0.09
0.14

2
3
2
2

.94

.93

.89

.97
Visit durations

441
442
443
444

0.16
0.19
0.25
0.27

0.02
0.02
0.01
0.02

0.89
0.76
1.08
0.97

0.14
0.13
0.02
0.06

2
3
2
2

1.00
.99

1.00
.99

from Baum et al.’s analysis how to handle the
data from the composite conditions when the
scheduled likelihoods of reinforcement were
the same (.0078), these data were omitted
from the present analyses.

Figure 7 shows, for each rat, that the effi-
ciency of obtaining stay reinforcers did not
change systematically as a function of the ra-
tio of the scheduled likelihoods of stay and
switch reinforcement. In contrast, the effi-
ciency of obtaining switch reinforcers in-
creased with the ratio of the scheduled like-
lihoods of stay and switch reinforcement. The
efficiency of obtaining stay reinforcers was
calculated by dividing the number of rein-
forcers obtained for staying by the maximum
number of stay reinforcers that could be ob-
tained. The maximum number of stay rein-
forcers that could be obtained was the total
duration at the stay lever, which earned stay
reinforcers, divided by the scheduled stay RI
(0.5 s divided by probability of an output).
Similarly, the efficiency of obtaining switch
reinforcers was calculated by dividing the
number of reinforcers obtained for switching
by the maximum number of switch reinforc-
ers that could be obtained. The maximum
number of switch reinforcers that could be
obtained was the total duration at the stay le-
ver, which also earned switch reinforcers, di-
vided by the scheduled switch RI. Thus, the
efficiency of obtaining switch reinforcers de-
creased as the relative likelihood of switch re-
inforcement increased. Some efficiencies are
greater than 100%, which probably reflects

local fluctuations in the random output gen-
erator used in the RI schedule. This is espe-
cially likely given the low likelihood of an out-
put and the few total outputs at an
alternative, particularly at the extremes of the
reinforcer likelihood ratios. The fewer the to-
tal reinforcers, the more likely that local fluc-
tuations will produce large deviations from
the expected frequency of outputs. Even con-
sidering this, there seems to be a surprisingly
large number of conditions with efficiency ra-
tios greater than 100%. It is unlikely that
these local fluctuations can account for the
lack of a relation among stay efficiency and
the ratio of the scheduled likelihoods of re-
inforcement and the direct relation between
switch efficiencies and the ratio of the sched-
uled likelihoods of reinforcement.

DISCUSSION

Composite concurrent performances, ob-
tained by combining paired performances,
were described by the generalized matching
relation (Figures 1 and 2 and Table 2). These
paired performances were functionally unre-
lated and were obtained from different ses-
sions, sometimes widely separated in time.
These results replicate and extend to interval
schedules the results of MacDonall (1999),
which showed that performance maintained
by functionally unrelated pairs of VR sched-
ules can produce composite concurrent VR
performances that are described by the gen-
eralized matching law.

Neither the composite concurrent VR per-
formances nor the present composite concur-
rent RI performances can be explained by any
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Fig. 6. Run lengths as a function of preference for the richer alternative. The preference for the richer alternative
was the ratio of the run lengths at each alternative; the run length for the schedule with the greater per-visit frequency
of reinforcement was divided by the run length for the schedule with the smaller per-visit frequency of reinforcement.

theory of concurrent performance that, either
explicitly or implicitly, requires comparisons
among the alternatives. This is because in the
composite performances the alternatives do
not alternate, making comparisons impossible.
Scalar expectancy theory (Gibbon, Church,
Fairhurst, & Kacelnik, 1988) explicitly propos-
es that matching results from comparisons
among the alternatives. Organisms store inter-
reinforcement intervals at each alternative.
Then they randomly sample one interval from
each distribution of interreinforcement inter-
vals. They compare the two randomly sampled
intervals and respond at the alternative asso-

ciated with the smaller interval. In composite
concurrent performances, this comparison ap-
pears to be impossible because the two alter-
natives do not alternate within a session. A
simple modification may allow scalar expec-
tancy theory to account for the present data
as well as data from concurrent procedures.
For example, it may be proposed that the in-
terreinforcement intervals sampled from
memory are the distribution of stay interrein-
forcement intervals and the distribution of
switch interreinforcement intervals associated
with the current alternative. However, a diffi-
culty with this approach is that the RI sched-
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Fig. 7. The efficiency of obtaining stay reinforcers
(top panel) and switch reinforcers (bottom panel) as a
function of the ratio of the scheduled likelihoods of stay
divided by switch reinforcement.

ules stopped following a switch response and
resumed with the next stay response. Whether
animals can differentiate when the RI sched-
ules are operating, as apparently required for
scalar expectancy theory to account for the
present data, is an empirical question. Finally,
for this modification to apply to concurrent
procedures, two interreinforcement intervals
need to be stored and then sampled for each

alternative. This results in a total of four stored
distributions of interreinforcement intervals.

Matching as a fundamental process
(Herrnstein, 1970), melioration (Vaughan,
1981), and contingency discrimination, as
originally proposed (Davison & Jenkins,
1985), all implicitly require comparisons
among the alternatives. For these theories of
matching, comparisons among the alterna-
tives are necessary, although they are not ex-
plicitly discussed. Herrnstein suggested that
organisms behave so as to produce behavior
allocations that equal reinforcer allocations.
Certainly, some sort of comparison of behav-
ior and reinforcer allocation is implicit in this
view. Melioration begins to suggest the com-
parison implicit in matching. In melioration,
the local rates of reinforcement are thought
to be crucial. Animals switch to the alterna-
tive with the higher local rate of reinforce-
ment, which implies a comparison of local
rates of reinforcement at the alternatives.
Contingency discrimination implies a com-
parison of perceived reinforcer allocation
and behavior allocation. Although the gen-
eralized matching law described the compos-
ite concurrent performances, because the al-
ternatives did not alternate and usually did
not succeed each other, any of these compar-
isons appear to be impossible. In addition, to
the extent that the variables influencing the
composite concurrent interval performances
accurately reflect the variables influencing
standard concurrent interval performances
(cf. Herrnstein, 1961), concurrent perfor-
mances could not be understood by any the-
ory positing, explicitly or implicitly, compar-
isons among the alternatives.

The results of the present experiment help
us to understand how concurrent perfor-
mance occurs. The performances at the al-
ternatives were independent of one another,
which implies that models of concurrent per-
formance need to focus on the contingencies
and performances at the alternatives. That is,
one needs to develop a model of perfor-
mance based on the contingencies at each of
the alternatives. One approach to modeling
concurrent performance is the local version
of the contingency discrimination model
(Equation 6), which fitted the performances
at the alternatives, that is, run lengths, visit
durations, and stay and switch reinforcers
(Figure 4 and Table 4). Note that this model
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combines the essential features of the contin-
gency discrimination model (Davison & Jen-
kins, 1985) and the local model (MacDonall,
1999). The local contingency discrimination
model, as applied to concurrent perfor-
mance (Equation 7), fitted the composite re-
sults (Figures 1 and 2 and Table 6).

Another approach to modeling concurrent
performance is the local model (Equation 3),
which fitted the run lengths, visit durations,
and stay and switch reinforcers per visit. Run
lengths and visit durations were power func-
tions of the ratio of the likelihoods of rein-
forcement. From these independently ac-
quired run lengths and visit durations,
composite concurrent performances were
created, and the local model, as applied to
concurrent performance (Equation 4) fitted
these composite performances. These results
replicate and extend to interval-based stay
and switch schedules, which are commonly
used in concurrent procedures, those ob-
tained using VR as the stay and switch sched-
ules (MacDonall, 1999). A comparison of the
fits by the local model as applied to concur-
rent performance and the local contingency
discrimination model as applied to concur-
rent performance (Equations 4 and 7, re-
spectively) show that r2 was larger for four of
the fits by the local contingency discrimina-
tion model (see Tables 5 and 6).

In evaluating a model, factors in addition
to the goodness of fit of the model to the data
are considered. One factor is the validity of
the assumptions. For example, the local con-
tingency discrimination model, as applied to
concurrent performance, assumes that rein-
forcer allocation is perceived equally well at
each alternative, that is, the model assumes
p1 5 p9. However, the results of the present
experiment do not support this assumption.
Inspection of Tables 4 and 6 shows that p1 5
p9 in only three of the eight comparisons. The
local model assumes that behavioral sensitiv-
ity to reinforcer allocation is equal at the al-
ternatives, k1 5 k9. This equality was support-
ed by the present data (Table 5) and by
MacDonall (1999).

MacDonall (1999) discussed the relation
between the generalized matching law (Equa-
tion 1) and the local model as applied to con-
current performances (Equation 4). He dem-
onstrated that both equations can be derived
from Equation 3, the local model, and that

the slope from the generalized matching law,
a, should be twice k9, the slope from the local
model as applied to concurrent performance
(Equation 4). His results showed that, in fact,
a was approximately twice k9 for each rat. This
relation was also found for each rat in the
present experiment (Table 5). Because the
generalized matching law can be derived
from the local model, this suggests that the
orderly performances at the alternatives are
not by-products of generalized matching;
rather, generalized matching is a by-product
of orderly performances at the alternatives.
The view that the local model may be more
fundamental was also based on the decom-
position of concurrent schedules into two
pairs of schedules, and the creation of com-
posite concurrent performances from func-
tionally unrelated performances maintained
by just one pair of schedules. Because those
composite performances were obtained using
one pair of VR schedules, and because there
is only one published demonstration of non-
exclusive matching using VR schedules
(MacDonall, 1988), some may be concerned
about extending this analysis to concurrent
interval schedules. The present results were
obtained using functionally unrelated pairs of
interval schedules, indicating that the argu-
ment that the local model may be the more
fundamental relation also applies to concur-
rent interval schedules (MacDonall, 1999).

The results of the present rich and lean
analysis (Figure 6) partially replicated the re-
sults of a similar analysis reported by Baum
et al. (1999). Their experiment and the pres-
ent experiment found that run length at the
richer alternative increased as preference for
the richer alternative increased. However, at
the leaner alternative, where Baum et al.
found that run lengths remained approxi-
mately constant at one as preference for the
richer alternative increased, the present ex-
periment found clear changes: decreases for
2 rats and an increase for 1 rat. Several pro-
cedural factors may account for this differ-
ence. Baum et al. used a wider range of re-
inforcer ratios between the richer and leaner
alternatives, approximately 5 log10 units,
whereas the range in the present experiment
was up to 2 log10 units. The greater range in
their experiment means the likelihood of re-
inforcement at the lean alternative was low in
many conditions, which may have made it eas-
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ier to see that run lengths were approximate-
ly equal to one. An additional factor is the
difference in the number of sessions per con-
dition in each experiment. Their subjects ex-
perienced many more sessions at each con-
dition, ranging from 24 to 147 with a mean
of 57 and a median of 50. In the present ex-
periment the number of sessions per condi-
tion ranged from 10 to 36 with a mean of 16.5
and a median of 15. If the current experi-
ment were continued for additional sessions
in each condition, the results might turn out
to be more similar to their results.

The present results and those of Mac-
Donall (1999) are consistent with momentary
maximizing accounts of concurrent perfor-
mance (Shimp, 1966). Likelihoods of rein-
forcement (in the present experiment) and
probabilities of reinforcement (MacDonall,
1999) controlled behavior. However, Mac-
Donall (1999) used a set of ratios obtained by
the method of Fleshler and Hoffman (1962),
which produces only an approximation to a
random probability of reinforcement, which
momentary maximizing assumes. The pres-
ent experiment used RI schedules. Momen-
tary maximizing predicts a pattern consisting
of a run at the richer alternative followed by
one response at the leaner alternative. The
changes in run length at the richer alterna-
tive were consistent with momentary maxi-
mizing, but the changes in run lengths at the
leaner alternative were not. Interestingly,
Baum et al. (1999) found that run lengths
increased at the richer alternative and re-
mained approximately constant, equaling
one, at the leaner alternative, a finding con-
sistent with momentary maximizing. Al-
though others have provided data to chal-
lenge momentary maximizing (Heyman,
1979; Nevin, 1969, 1979; Silberberg, Hamil-
ton, Ziriax & Casey, 1978), MacDonall (1999)
discussed how those results could be inter-
preted without challenging momentary max-
imizing. Essentially, he argued that the large
degree of variability in those experiments ob-
scures the molecular relations. The large var-
iability may require means, or other measures
of central tendency, rather than sequential
dependencies to reveal the molecular rela-
tions.

In summary, decomposing concurrent
schedules into two pairs of stay and switch
schedules results in procedures that inform

the controlling relations in concurrent pro-
cedures. Each pair of schedules controls a
performance that is functionally unrelated to
the other pair of schedules and the perfor-
mances they control. Two models, the local
model (Equation 3) and the local contingen-
cy discrimination model (Equation 6), fitted
the functionally unrelated performances, and
each yielded a model that fitted the compos-
ite concurrent performances. The function-
ally unrelated performances at the alterna-
tives and composite concurrent performances
that were described by the generalized match-
ing law challenge theories of concurrent per-
formance, such as melioration, scalar expec-
tancy theory, and the original version of the
contingency discrimination model (Equation
5), that require comparisons among the al-
ternatives.
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APPENDIX

To develop a model of concurrent perfor-
mance based on Equation 3, take the ratio of
the power functions at each alternative,
which yields

B Lt1 1k log 1 log m1 11 2 1 2C Lw2 2
log 5 . (A1)

B Lt2 2k log 1 log m2 21 2 1 2C Lw1 1

When rearranged, this becomes

B11 2C2 Lt Lw1 1log 5 k log 1 k log1 21 2 1 2Lw Lt2 2B21 2C1

m11 log . (A2)1 2m2

Letting m9 5 assuming 5 thenm /m , k k ,1 2 1 2
substituting k9 (MacDonall, 1999) and rear-
ranging results in

 B11 2C 2 Lt ·Lw1 1 log 5 k9 log1 2Lt ·Lw2 2B2 1 2C1 

1 log m9. (A3)


